

JAWAHARLAL NEHRUTECHNOLOGICALUNIVERSITY: KAKINADA KAKINADA-533003, Andhra Pradesh, India

R-13 Syllabus for IT.JNTUK

II Year-I Semester		T	P	C
		4	0	3
	DATA STRUCTURES (RT21042)			

PrerequisiteCourse:

Computer Programming in C

Course Description and Objectives:

Comprehensive knowledge of data structures and ability to implement the same in software applications

Course Outcomes:

Upon completion of the course, the student will be able to achieve the following outcomes.

Cos	Course Outcomes	POs
1	Explain about algorithm complexities, recursive algorithms, searching and sorting	3
	techniques.	
2	Describe about stack and queue with its various operations and applications.	5
3	Discuss about linked list with its operations and its applications.	6
4	Define Binary tree with its properties, representations and traversals.	5
5	Explain BST, its operations, and applications	4
6	Explain about graphs, its representation, traversal, spanning trees and various algorithms.	6

Syllabus:

UNIT I:

Objective: exposure to algorithmic complexities, recursive algorithms, searching and sorting techniques

Preliminaries of algorithm, Algorithm analysis and complexity,

Data structure- Definition , types of data structures Recursion: Definition, Design Methodology and Implementation of recursive algorithms, Linear and binary recursion, recursive algorithms for factorial function, GCD computation, Fibonacci sequence, Towers of Hanoi, Tail recursion List Searches using Linear Search, Binary Search, Fibonacci Search **Sorting Techniques**: Basic concepts, Sorting by : insertion (Insertion sort), selection (heap sort), exchange (bubble sort,quick sort), distribution (radix sort)and merging (merge sort) Algorithms.

UNIT II:

Objective: Applying stack and queue techniques for logical operations

Stacks and Queues: Basic Stack Operations, Representation of a Stack using Arrays, Stack Applications: Reversing list, Factorial Calculation, Infix to postfix Transformation, Evaluating Arithmetic Expressions.

Queues: Basic Queues Operations, Representation of a Queue using array, mplementation of Queue Operations using Stack, Applications of Queues-Round robin Algorithm, Circular Queues, Priority Queues.

JAWAHARLAL NEHRUTECHNOLOGICALUNIVERSITY: KAKINADA KAKINADA-533003, Andhra Pradesh, India

R-13 Syllabus for IT.JNTUK

UNIT III:

Objective: Exposure to list representation models in various types of applications

Linked Lists: Introduction, single linked list, representation of a linked list in memory, Operations on a single linked list, Reversing a single linked list, applications of single linked list to represent polynomial expressions and sparse matrix manipulation, Advantages and disadvantages of single linked list, Circular linked list, Double linked list

UNIT IV:

Objective: Implementation of tree implementation in various forms

Trees: Basic tree concepts, Binary Trees: Properties, Representation of Binary Trees using arrays and linked lists, operations on a Binary tree, Binary Tree Traversals (recursive), Creation of binary tree from in, pre and post order traversals

UNIT V:

Objectives: Advanced understanding of other variants of trees and their operations

Advanced concepts of Trees: Tree Travels using stack (non recursive), Threaded Binary Trees. Binary search tree, Basic concepts, BST operations: insertion, deletion, Balanced binary trees – need, basics and applications in computer science (No operations)

IINIT VI

Objectives: orientation on graphs, representation of graphs, graph traversals, spanning trees

Graphs: Basic concepts, Representations of Graphs: using Linked list and adjacency matrix, Graph algorithms Graph Traversals (BFS & DFS), applications: Dijkstra's

shortest path, Transitive closure, Minimum Spanning Tree using Prim's Algorithm, warshall's Algorithm(Algorithemic Concepts Only, No Programs required).

TEXT BOOKS:

- 1. Data Structure with C, Seymour Lipschutz, TMH
- 2. Data Structures using C,Reema Thareja, Oxford
- 3. Data Structures, 2/e, Richard F, Gilberg, Forouzan, Cengage
- 4. Data Structure & Algorithm Analysis in C, 2nd Edition Mark Allen Weiss

REFERENCE BOOKS:

- 1.Data Structures and Algorithms, 2008, G.A.V. Pai, TMH
- 2. Classic Data Structures, 2/e, Debasis , Samanta, PHI, 2009
- 3. Fundamentals of DataStructure in C, 2/e, Horowitz, Sahni, Anderson Freed, University Prees